
orient
Release 7.0.1-alpha

Azat Ibrakov

Jun 24, 2023





CONTENTS

Python Module Index 43

Index 45

i



ii



orient, Release 7.0.1-alpha

Note: If object is not listed in documentation it should be considered as implementation detail that can change and
should not be relied upon.

orient.planar.point_in_segment(point: Point, segment: Segment, *, context: Optional[Context] = None)→
Location

Finds location of point in segment.

Time complexity:
O(1)

Memory complexity:
O(1)

Parameters

• point – point to check for.

• segment – segment to check in.

• context – geometric context.

Returns
location of point in segment.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> segment = Segment(Point(0, 0), Point(2, 0))
>>> point_in_segment(Point(0, 0), segment) is Location.BOUNDARY
True
>>> point_in_segment(Point(1, 0), segment) is Location.BOUNDARY
True
>>> point_in_segment(Point(2, 0), segment) is Location.BOUNDARY
True
>>> point_in_segment(Point(3, 0), segment) is Location.EXTERIOR
True
>>> point_in_segment(Point(0, 1), segment) is Location.EXTERIOR
True

orient.planar.segment_in_segment(left: Segment, right: Segment, *, context: Optional[Context] = None)→
Relation

Finds relation between segments.

Time complexity:
O(1)

Memory complexity:
O(1)

Parameters

• left – segment to check for.

• right – segment to check in.

• context – geometric context.

CONTENTS 1



orient, Release 7.0.1-alpha

Returns
relation between segments.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> segment = Segment(Point(0, 0), Point(2, 0))
>>> (segment_in_segment(Segment(Point(0, 0), Point(0, 2)), segment)
... is Relation.TOUCH)
True
>>> (segment_in_segment(Segment(Point(0, 0), Point(1, 0)), segment)
... is Relation.COMPONENT)
True
>>> (segment_in_segment(Segment(Point(0, 0), Point(2, 0)), segment)
... is Relation.EQUAL)
True
>>> (segment_in_segment(Segment(Point(0, 0), Point(3, 0)), segment)
... is Relation.COMPOSITE)
True
>>> (segment_in_segment(Segment(Point(1, 0), Point(3, 0)), segment)
... is Relation.OVERLAP)
True
>>> (segment_in_segment(Segment(Point(2, 0), Point(3, 0)), segment)
... is Relation.TOUCH)
True
>>> (segment_in_segment(Segment(Point(3, 0), Point(4, 0)), segment)
... is Relation.DISJOINT)
True

orient.planar.point_in_multisegment(point: Point, multisegment: Multisegment, *, context:
Optional[Context] = None)→ Location

Finds location of point in multisegment.

Time complexity:
O(len(multisegment.segments))

Memory complexity:
O(1)

Parameters

• point – point to check for.

• multisegment – multisegment to check in.

• context – geometric context.

Returns
location of point in multisegment.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls

(continues on next page)

2 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> Segment = context.segment_cls
>>> multisegment = Multisegment([Segment(Point(0, 0), Point(1, 0)),
... Segment(Point(3, 0), Point(5, 0))])
>>> point_in_multisegment(Point(0, 0), multisegment) is Location.BOUNDARY
True
>>> point_in_multisegment(Point(0, 1), multisegment) is Location.EXTERIOR
True
>>> point_in_multisegment(Point(1, 0), multisegment) is Location.BOUNDARY
True
>>> point_in_multisegment(Point(2, 0), multisegment) is Location.EXTERIOR
True
>>> point_in_multisegment(Point(3, 0), multisegment) is Location.BOUNDARY
True
>>> point_in_multisegment(Point(4, 0), multisegment) is Location.BOUNDARY
True

orient.planar.segment_in_multisegment(segment: Segment, multisegment: Multisegment, *, context:
Optional[Context] = None)→ Relation

Finds relation between segment and multisegment.

Time complexity:
O(segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(multisegment.segments).

Parameters

• segment – segment to check for.

• multisegment – multisegment to check in.

• context – geometric context.

Returns
relation between segment and multisegment.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> multisegment = Multisegment([Segment(Point(0, 0), Point(1, 1)),
... Segment(Point(1, 1), Point(3, 3))])
>>> segment_in_multisegment(Segment(Point(0, 0), Point(1, 0)),
... multisegment) is Relation.TOUCH
True
>>> segment_in_multisegment(Segment(Point(0, 0), Point(0, 1)),
... multisegment) is Relation.TOUCH
True
>>> segment_in_multisegment(Segment(Point(0, 1), Point(1, 0)),
... multisegment) is Relation.CROSS
True
>>> segment_in_multisegment(Segment(Point(0, 0), Point(1, 1)),

(continues on next page)

CONTENTS 3



orient, Release 7.0.1-alpha

(continued from previous page)

... multisegment) is Relation.COMPONENT
True
>>> segment_in_multisegment(Segment(Point(0, 0), Point(3, 3)),
... multisegment) is Relation.EQUAL
True
>>> segment_in_multisegment(Segment(Point(2, 2), Point(4, 4)),
... multisegment) is Relation.OVERLAP
True
>>> segment_in_multisegment(Segment(Point(4, 4), Point(5, 5)),
... multisegment) is Relation.DISJOINT
True

orient.planar.multisegment_in_multisegment(left: Multisegment, right: Multisegment, *, context:
Optional[Context] = None)→ Relation

Finds relation between multisegments.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(left.segments) + len(right.segments).

Parameters

• left – multisegment to check for.

• right – multisegment to check in.

• context – geometric context.

Returns
relation between multisegments.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]
>>> inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> square_diagonals = [Segment(Point(0, 0), Point(2, 2)),
... Segment(Point(2, 2), Point(4, 0)),
... Segment(Point(2, 2), Point(4, 4)),
... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_multisegment(Multisegment(inner_square_edges),
... Multisegment(square_edges))
... is Relation.DISJOINT)
True

(continues on next page)

4 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> (multisegment_in_multisegment(Multisegment(square_diagonals),
... Multisegment(square_edges))
... is Relation.TOUCH)
True
>>> (multisegment_in_multisegment(Multisegment(square_diagonals),
... Multisegment(inner_square_edges))
... is Relation.CROSS)
True
>>> (multisegment_in_multisegment(Multisegment(inner_square_edges
... + [square_edges[0]]),
... Multisegment(square_edges))
... is Relation.OVERLAP)
True
>>> (multisegment_in_multisegment(Multisegment(square_edges
... + inner_square_edges),
... Multisegment(square_edges))
... is Relation.COMPOSITE)
True
>>> (multisegment_in_multisegment(Multisegment(square_edges),
... Multisegment(square_edges))
... is Relation.EQUAL)
True
>>> (multisegment_in_multisegment(Multisegment(square_edges),
... Multisegment(square_edges
... + inner_square_edges))
... is Relation.COMPONENT)
True

orient.planar.point_in_contour(point: Point, contour: Contour, *, context: Optional[Context] = None)→
Location

Finds location of point in contour.

Time complexity:
O(len(contour.vertices))

Memory complexity:
O(1)

Parameters

• point – point to check for.

• contour – contour to check in.

• context – geometric context.

Returns
location of point in contour.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> square = Contour([Point(0, 0), Point(2, 0), Point(2, 2), Point(0, 2)])

(continues on next page)

CONTENTS 5



orient, Release 7.0.1-alpha

(continued from previous page)

>>> point_in_contour(Point(0, 0), square) is Location.BOUNDARY
True
>>> point_in_contour(Point(1, 1), square) is Location.EXTERIOR
True
>>> point_in_contour(Point(2, 2), square) is Location.BOUNDARY
True
>>> point_in_contour(Point(3, 3), square) is Location.EXTERIOR
True

orient.planar.segment_in_contour(segment: Segment, contour: Contour, *, context: Optional[Context] =
None)→ Relation

Finds relation between segment and contour.

Time complexity:
O(len(contour.vertices))

Memory complexity:
O(1)

Parameters

• segment – segment to check for.

• contour – contour to check in.

• context – geometric context.

Returns
relation between segment and contour.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(3, 0), Point(3, 3), Point(0, 3)])
>>> (segment_in_contour(Segment(Point(0, 0), Point(1, 0)), square)
... is Relation.COMPONENT)
True
>>> (segment_in_contour(Segment(Point(0, 0), Point(3, 0)), square)
... is Relation.COMPONENT)
True
>>> (segment_in_contour(Segment(Point(2, 0), Point(4, 0)), square)
... is Relation.OVERLAP)
True
>>> (segment_in_contour(Segment(Point(4, 0), Point(5, 0)), square)
... is Relation.DISJOINT)
True
>>> (segment_in_contour(Segment(Point(1, 0), Point(1, 2)), square)
... is Relation.TOUCH)
True
>>> (segment_in_contour(Segment(Point(0, 0), Point(1, 1)), square)
... is Relation.TOUCH)
True

(continues on next page)

6 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> (segment_in_contour(Segment(Point(1, 1), Point(2, 2)), square)
... is Relation.DISJOINT)
True
>>> (segment_in_contour(Segment(Point(2, 2), Point(4, 4)), square)
... is Relation.CROSS)
True

orient.planar.multisegment_in_contour(multisegment: Multisegment, contour: Contour, *, context:
Optional[Context] = None)→ Relation

Finds relation between multisegment and contour.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(left.vertices) + len(right.vertices).

Parameters

• multisegment – multisegment to check for.

• contour – contour to check in.

• context – geometric context.

Returns
relation between multisegment and contour.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]
>>> inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> square_diagonals = [Segment(Point(0, 0), Point(2, 2)),
... Segment(Point(2, 2), Point(4, 0)),
... Segment(Point(2, 2), Point(4, 4)),
... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_contour(Multisegment(inner_square_edges), square)
... is Relation.DISJOINT)
True
>>> (multisegment_in_contour(Multisegment(square_diagonals), square)
... is Relation.TOUCH)

(continues on next page)

CONTENTS 7



orient, Release 7.0.1-alpha

(continued from previous page)

True
>>> (multisegment_in_contour(Multisegment(square_diagonals), inner_square)
... is Relation.CROSS)
True
>>> (multisegment_in_contour(
... Multisegment(square_diagonals + [square_edges[0]]), square)
... is Relation.OVERLAP)
True
>>> (multisegment_in_contour(Multisegment(square_diagonals + square_edges),
... square)
... is Relation.COMPOSITE)
True
>>> (multisegment_in_contour(Multisegment(square_edges), square)
... is Relation.EQUAL)
True
>>> (multisegment_in_contour(Multisegment(square_edges[1:]), square)
... is Relation.COMPONENT)
True

orient.planar.contour_in_contour(left: Contour, right: Contour, *, context: Optional[Context] = None)→
Relation

Finds relation between contours.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(left.vertices) + len(right.vertices).

Parameters

• left – contour to check for.

• right – contour to check in.

• context – geometric context.

Returns
relation between contours.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> triangle = Contour([Point(0, 0), Point(1, 0), Point(0, 1)])
>>> square = Contour([Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)])
>>> contour_in_contour(triangle, triangle) is Relation.EQUAL
True
>>> contour_in_contour(triangle, square) is Relation.OVERLAP
True
>>> contour_in_contour(square, triangle) is Relation.OVERLAP
True
>>> contour_in_contour(square, square) is Relation.EQUAL
True

8 CONTENTS



orient, Release 7.0.1-alpha

orient.planar.point_in_region(point: Point, region: Contour, *, context: Optional[Context] = None)→
Location

Finds location of point in region.

Based on ray casting algorithm.

Time complexity:
O(len(region.vertices))

Memory complexity:
O(1)

Reference:
https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm

Parameters

• point – point to check for.

• region – region to check in.

• context – geometric context.

Returns
location of point in region.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> square = Contour([Point(0, 0), Point(2, 0), Point(2, 2), Point(0, 2)])
>>> point_in_region(Point(0, 0), square) is Location.BOUNDARY
True
>>> point_in_region(Point(1, 1), square) is Location.INTERIOR
True
>>> point_in_region(Point(2, 2), square) is Location.BOUNDARY
True
>>> point_in_region(Point(3, 3), square) is Location.EXTERIOR
True

orient.planar.segment_in_region(segment: Segment, region: Contour, *, context: Optional[Context] =
None)→ Relation

Finds relation between segment and region.

Time complexity:
O(len(region.vertices))

Memory complexity:
O(1)

Parameters

• segment – segment to check for.

• region – region to check in.

• context – geometric context.

Returns
relation between segment and region.

CONTENTS 9

https://en.wikipedia.org/wiki/Point_in_polygon#Ray_casting_algorithm


orient, Release 7.0.1-alpha

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(3, 0), Point(3, 3), Point(0, 3)])
>>> (segment_in_region(Segment(Point(0, 0), Point(1, 0)), square)
... is Relation.COMPONENT)
True
>>> (segment_in_region(Segment(Point(0, 0), Point(3, 0)), square)
... is Relation.COMPONENT)
True
>>> (segment_in_region(Segment(Point(2, 0), Point(4, 0)), square)
... is Relation.TOUCH)
True
>>> (segment_in_region(Segment(Point(4, 0), Point(5, 0)), square)
... is Relation.DISJOINT)
True
>>> (segment_in_region(Segment(Point(1, 0), Point(1, 2)), square)
... is Relation.ENCLOSED)
True
>>> (segment_in_region(Segment(Point(0, 0), Point(1, 1)), square)
... is Relation.ENCLOSED)
True
>>> (segment_in_region(Segment(Point(1, 1), Point(2, 2)), square)
... is Relation.WITHIN)
True
>>> (segment_in_region(Segment(Point(2, 2), Point(4, 4)), square)
... is Relation.CROSS)
True

orient.planar.multisegment_in_region(multisegment: Multisegment, region: Contour, *, context:
Optional[Context] = None)→ Relation

Finds relation between multisegment and region.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(multisegment.segments) + len(region.vertices).

Parameters

• multisegment – multisegment to check for.

• region – region to check in.

• context – geometric context.

Returns
relation between multisegment and region.

>>> from ground.base import Relation, get_context
>>> context = get_context()

(continues on next page)

10 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> Contour = context.contour_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]
>>> inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> square_diagonals = [Segment(Point(0, 0), Point(2, 2)),
... Segment(Point(2, 2), Point(4, 0)),
... Segment(Point(2, 2), Point(4, 4)),
... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_region(Multisegment(square_edges), inner_square)
... is Relation.DISJOINT)
True
>>> (multisegment_in_region(
... Multisegment(square_edges + inner_square_edges), inner_square)
... is Relation.TOUCH)
True
>>> (multisegment_in_region(Multisegment(square_diagonals), inner_square)
... is Relation.CROSS)
True
>>> (multisegment_in_region(Multisegment(square_edges), square)
... is Relation.COMPONENT)
True
>>> (multisegment_in_region(
... Multisegment(square_edges + inner_square_edges), square)
... is Relation.ENCLOSED)
True
>>> (multisegment_in_region(Multisegment(inner_square_edges), square)
... is Relation.WITHIN)
True

orient.planar.contour_in_region(contour: Contour, region: Contour, *, context: Optional[Context] =
None)→ Relation

Finds relation between contour and region.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(contour.vertices) + len(region.vertices).

Parameters

• contour – contour to check for.

CONTENTS 11



orient, Release 7.0.1-alpha

• region – region to check in.

• context – geometric context.

Returns
relation between contour and region.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> contour_in_region(square, inner_square) is Relation.DISJOINT
True
>>> contour_in_region(square, triangle) is Relation.TOUCH
True
>>> contour_in_region(inner_square, triangle) is Relation.CROSS
True
>>> contour_in_region(square, square) is Relation.COMPONENT
True
>>> contour_in_region(triangle, square) is Relation.ENCLOSED
True
>>> contour_in_region(inner_square, square) is Relation.WITHIN
True

orient.planar.region_in_region(left: Contour, right: Contour, *, context: Optional[Context] = None)→
Relation

Finds relation between regions.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(left.vertices) + len(right.vertices).

Parameters

• left – region to check for.

• right – region to check in.

• context – geometric context.

Returns
relation between regions.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> neighbour_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])

(continues on next page)

12 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (region_in_region(inner_square, neighbour_square)
... is Relation.DISJOINT)
True
>>> region_in_region(square, neighbour_square) is Relation.TOUCH
True
>>> region_in_region(inner_square, triangle) is Relation.OVERLAP
True
>>> region_in_region(square, inner_square) is Relation.COVER
True
>>> region_in_region(square, triangle) is Relation.ENCLOSES
True
>>> region_in_region(square, square) is Relation.EQUAL
True
>>> region_in_region(triangle, square) is Relation.ENCLOSED
True
>>> region_in_region(inner_square, square) is Relation.WITHIN
True

orient.planar.point_in_multiregion(point: Point, multiregion: Sequence[Contour], *, context:
Optional[Context] = None)→ Location

Finds location of point in multiregion.

Time complexity:
O(sum(len(region.vertices) for region in multiregion))

Memory complexity:
O(1)

Parameters

• point – point to check for.

• multiregion – multiregion to check in.

• context – geometric context.

Returns
location of point in multiregion.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> triangle = Contour([Point(0, 0), Point(2, 0), Point(0, 2)])
>>> square = Contour([Point(0, 0), Point(2, 0), Point(2, 2), Point(0, 2)])
>>> point_in_multiregion(Point(0, 0), [triangle]) is Location.BOUNDARY
True
>>> point_in_multiregion(Point(0, 0), [square]) is Location.BOUNDARY
True
>>> point_in_multiregion(Point(1, 1), [triangle]) is Location.BOUNDARY
True

(continues on next page)

CONTENTS 13



orient, Release 7.0.1-alpha

(continued from previous page)

>>> point_in_multiregion(Point(1, 1), [square]) is Location.INTERIOR
True
>>> point_in_multiregion(Point(2, 2), [triangle]) is Location.EXTERIOR
True
>>> point_in_multiregion(Point(2, 2), [square]) is Location.BOUNDARY
True

orient.planar.segment_in_multiregion(segment: Segment, multiregion: Sequence[Contour], *, context:
Optional[Context] = None)→ Relation

Finds relation between segment and multiregion.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = sum(len(region.vertices) for region in multiregion).

Parameters

• segment – segment to check for.

• multiregion – multiregion to check in.

• context – geometric context.

Returns
relation between segment and multiregion.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(3, 0), Point(3, 3), Point(0, 3)])
>>> (segment_in_multiregion(Segment(Point(0, 0), Point(1, 0)), [])
... is Relation.DISJOINT)
True
>>> (segment_in_multiregion(Segment(Point(0, 0), Point(1, 0)), [square])
... is Relation.COMPONENT)
True
>>> (segment_in_multiregion(Segment(Point(0, 0), Point(3, 0)), [square])
... is Relation.COMPONENT)
True
>>> (segment_in_multiregion(Segment(Point(2, 0), Point(4, 0)), [square])
... is Relation.TOUCH)
True
>>> (segment_in_multiregion(Segment(Point(4, 0), Point(5, 0)), [square])
... is Relation.DISJOINT)
True
>>> (segment_in_multiregion(Segment(Point(1, 0), Point(1, 2)), [square])
... is Relation.ENCLOSED)
True
>>> (segment_in_multiregion(Segment(Point(0, 0), Point(1, 1)), [square])
... is Relation.ENCLOSED)

(continues on next page)

14 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

True
>>> (segment_in_multiregion(Segment(Point(1, 1), Point(2, 2)), [square])
... is Relation.WITHIN)
True
>>> (segment_in_multiregion(Segment(Point(2, 2), Point(4, 4)), [square])
... is Relation.CROSS)
True

orient.planar.multisegment_in_multiregion(multisegment: Multisegment, multiregion:
Sequence[Contour], *, context: Optional[Context] = None)
→ Relation

Finds relation between multisegment and multiregion.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(multisegment.segments) + sum(len(region.vertices) for
region in multiregion).

Parameters

• multisegment – multisegment to check for.

• multiregion – multiregion to check in.

• context – geometric context.

Returns
relation between multisegment and multiregion.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Segment = context.segment_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> second_inner_square = Contour([Point(5, 5), Point(7, 5), Point(7, 7),
... Point(5, 7)])
>>> first_square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]
>>> first_inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> first_square_diagonals = [Segment(Point(0, 0), Point(2, 2)),

(continues on next page)

CONTENTS 15



orient, Release 7.0.1-alpha

(continued from previous page)

... Segment(Point(2, 2), Point(4, 0)),

... Segment(Point(2, 2), Point(4, 4)),

... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_multiregion(Multisegment(first_square_edges),
... [first_inner_square, second_inner_square])
... is Relation.DISJOINT)
True
>>> (multisegment_in_multiregion(Multisegment(first_square_edges
... + first_inner_square_edges),
... [first_inner_square, second_inner_square])
... is Relation.TOUCH)
True
>>> (multisegment_in_multiregion(Multisegment(first_square_diagonals),
... [first_inner_square, second_inner_square])
... is Relation.CROSS)
True
>>> (multisegment_in_multiregion(Multisegment(first_square_edges),
... [first_square, second_square])
... is Relation.COMPONENT)
True
>>> (multisegment_in_multiregion(Multisegment(first_inner_square_edges),
... [first_square, second_square])
... is Relation.WITHIN)
True

orient.planar.contour_in_multiregion(contour: Contour, multiregion: Sequence[Contour], *, context:
Optional[Context] = None)→ Relation

Finds relation between contour and multiregion.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(contour.vertices) + sum(len(region.vertices) for region in
multiregion).

Parameters

• contour – contour to check for.

• multiregion – multiregion to check in.

• context – geometric context.

Returns
relation between contour and multiregion.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),

(continues on next page)

16 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (contour_in_multiregion(first_square,
... [first_inner_square, second_inner_square])
... is Relation.DISJOINT)
True
>>> (contour_in_multiregion(second_square, [first_square, third_square])
... is Relation.TOUCH)
True
>>> (contour_in_multiregion(first_inner_square, [triangle, second_square])
... is Relation.CROSS)
True
>>> (contour_in_multiregion(first_square, [first_square, third_square])
... is Relation.COMPONENT)
True
>>> (contour_in_multiregion(triangle, [first_square, third_square])
... is Relation.ENCLOSED)
True
>>> (contour_in_multiregion(first_inner_square,
... [first_square, third_square])
... is Relation.WITHIN)
True

orient.planar.region_in_multiregion(region: Contour, multiregion: Sequence[Contour], *, context:
Optional[Context] = None)→ Relation

Finds relation between region and multiregion.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(region.vertices) + sum(len(region.vertices) for region in
multiregion).

Parameters

• region – region to check for.

• multiregion – multiregion to check in.

• context – geometric context.

Returns
relation between region and multiregion.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls

(continues on next page)

CONTENTS 17



orient, Release 7.0.1-alpha

(continued from previous page)

>>> Point = context.point_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> outer_square = Contour([Point(0, 0), Point(8, 0), Point(8, 8),
... Point(0, 8)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (region_in_multiregion(third_square,
... [first_inner_square, second_inner_square])
... is Relation.DISJOINT)
True
>>> (region_in_multiregion(second_square, [first_square, third_square])
... is Relation.TOUCH)
True
>>> (region_in_multiregion(first_square,
... [first_inner_square, second_inner_square])
... is Relation.OVERLAP)
True
>>> (region_in_multiregion(outer_square,
... [first_inner_square, second_inner_square])
... is Relation.COVER)
True
>>> (region_in_multiregion(outer_square, [first_square, third_square])
... is Relation.ENCLOSES)
True
>>> (region_in_multiregion(triangle, [first_square, third_square])
... is Relation.ENCLOSED)
True
>>> (region_in_multiregion(first_inner_square,
... [first_square, third_square])
... is Relation.WITHIN)
True

orient.planar.multiregion_in_multiregion(left: Sequence[Contour], right: Sequence[Contour], *, context:
Optional[Context] = None)→ Relation

Finds relation between multiregions.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = sum(len(region.vertices) for region in left) + sum(len(region.
vertices) for region in right).

Parameters

18 CONTENTS



orient, Release 7.0.1-alpha

• left – multiregion to check for.

• right – multiregion to check in.

• context – geometric context.

Returns
relation between multiregions.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> fourth_square = Contour([Point(0, 4), Point(4, 4), Point(4, 8),
... Point(0, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> third_inner_square = Contour([Point(5, 5), Point(7, 5), Point(7, 7),
... Point(5, 7)])
>>> (multiregion_in_multiregion([first_inner_square, third_inner_square],
... [second_square, fourth_square])
... is Relation.DISJOINT)
True
>>> (multiregion_in_multiregion([first_square, third_square],
... [second_square, fourth_square])
... is Relation.TOUCH)
True
>>> (multiregion_in_multiregion([first_square, third_inner_square],
... [first_inner_square, third_square])
... is Relation.OVERLAP)
True
>>> (multiregion_in_multiregion([first_square, third_square],
... [first_inner_square, third_inner_square])
... is Relation.COVER)
True
>>> (multiregion_in_multiregion([first_square, third_square],
... [first_square, third_inner_square])
... is Relation.ENCLOSES)
True
>>> (multiregion_in_multiregion(
... [first_inner_square, second_inner_square, third_inner_square],
... [first_inner_square, second_inner_square])
... is Relation.COMPOSITE)
True
>>> (multiregion_in_multiregion([first_square, third_square],
... [first_square, third_square])
... is Relation.EQUAL)

(continues on next page)

CONTENTS 19



orient, Release 7.0.1-alpha

(continued from previous page)

True
>>> (multiregion_in_multiregion(
... [first_inner_square, second_inner_square],
... [first_inner_square, second_inner_square, third_inner_square])
... is Relation.COMPONENT)
True
>>> (multiregion_in_multiregion([first_square, third_inner_square],
... [first_square, third_square])
... is Relation.ENCLOSED)
True
>>> (multiregion_in_multiregion([first_inner_square, third_inner_square],
... [first_square, third_square])
... is Relation.WITHIN)
True

orient.planar.point_in_polygon(point: Point, polygon: Polygon, *, context: Optional[Context] = None)→
Location

Finds location of point in polygon.

Time complexity:
O(vertices_count)

Memory complexity:
O(1)

where vertices_count = len(polygon.border.vertices) + sum(len(hole.vertices) for hole
in polygon.holes).

Parameters

• point – point to check for.

• polygon – polygon to check in.

• context – geometric context.

Returns
location of point in polygon.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> outer_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> (point_in_polygon(Point(0, 0), Polygon(inner_square, []))
... is Location.EXTERIOR)
True
>>> (point_in_polygon(Point(0, 0), Polygon(outer_square, []))
... is Location.BOUNDARY)
True
>>> (point_in_polygon(Point(1, 1), Polygon(inner_square, []))
... is Location.BOUNDARY)

(continues on next page)

20 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

True
>>> (point_in_polygon(Point(1, 1), Polygon(outer_square, []))
... is Location.INTERIOR)
True
>>> (point_in_polygon(Point(2, 2), Polygon(outer_square, []))
... is Location.INTERIOR)
True
>>> (point_in_polygon(Point(2, 2), Polygon(outer_square, [inner_square]))
... is Location.EXTERIOR)
True

orient.planar.segment_in_polygon(segment: Segment, polygon: Polygon, *, context: Optional[Context] =
None)→ Relation

Finds relation between segment and polygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(polygon.border.vertices) + sum(len(hole.vertices) for hole
in polygon.holes).

Parameters

• segment – segment to check for.

• polygon – polygon to check in.

• context – geometric context.

Returns
relation between segment and polygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> Segment = context.segment_cls
>>> outer_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> segment_in_polygon(Segment(Point(0, 0), Point(1, 0)),
... Polygon(outer_square, [])) is Relation.COMPONENT
True
>>> (segment_in_polygon(Segment(Point(0, 0), Point(1, 0)),
... Polygon(outer_square, [inner_square]))
... is Relation.COMPONENT)
True
>>> segment_in_polygon(Segment(Point(0, 0), Point(2, 2)),
... Polygon(outer_square, [])) is Relation.ENCLOSED
True
>>> (segment_in_polygon(Segment(Point(0, 0), Point(2, 2)),

(continues on next page)

CONTENTS 21



orient, Release 7.0.1-alpha

(continued from previous page)

... Polygon(outer_square, [inner_square]))

... is Relation.CROSS)
True
>>> segment_in_polygon(Segment(Point(1, 1), Point(3, 3)),
... Polygon(outer_square, [])) is Relation.WITHIN
True
>>> (segment_in_polygon(Segment(Point(1, 1), Point(3, 3)),
... Polygon(outer_square, [inner_square]))
... is Relation.TOUCH)
True
>>> segment_in_polygon(Segment(Point(0, 0), Point(4, 4)),
... Polygon(outer_square, [])) is Relation.ENCLOSED
True
>>> (segment_in_polygon(Segment(Point(0, 0), Point(4, 4)),
... Polygon(outer_square, [inner_square]))
... is Relation.CROSS)
True

orient.planar.multisegment_in_polygon(multisegment: Multisegment, polygon: Polygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between multisegment and polygon.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(multisegment.segments) + len(polygon.border.vertices) +
sum(len(hole.vertices) for hole in polygon.holes).

Parameters

• multisegment – multisegment to check for.

• polygon – polygon to check in.

• context – geometric context.

Returns
relation between multisegment and polygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> Segment = context.segment_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]

(continues on next page)

22 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> square_diagonals = [Segment(Point(0, 0), Point(2, 2)),
... Segment(Point(2, 2), Point(4, 0)),
... Segment(Point(2, 2), Point(4, 4)),
... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_polygon(Multisegment(square_edges),
... Polygon(inner_square, []))
... is Relation.DISJOINT)
True
>>> (multisegment_in_polygon(Multisegment(square_edges
... + inner_square_edges),
... Polygon(inner_square, []))
... is Relation.TOUCH)
True
>>> (multisegment_in_polygon(Multisegment(square_diagonals),
... Polygon(inner_square, []))
... is Relation.CROSS)
True
>>> (multisegment_in_polygon(Multisegment(square_edges),
... Polygon(square, []))
... is Relation.COMPONENT)
True
>>> (multisegment_in_polygon(Multisegment(square_edges
... + inner_square_edges),
... Polygon(square, []))
... is Relation.ENCLOSED)
True
>>> (multisegment_in_polygon(Multisegment(inner_square_edges),
... Polygon(square, []))
... is Relation.WITHIN)
True

orient.planar.contour_in_polygon(contour: Contour, polygon: Polygon, *, context: Optional[Context] =
None)→ Relation

Finds relation between contour and polygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(contour.vertices) + len(polygon.border.vertices) +
sum(len(hole.vertices) for hole in polygon.holes).

Parameters

• contour – contour to check for.

• polygon – polygon to check in.

• context – geometric context.

CONTENTS 23



orient, Release 7.0.1-alpha

Returns
relation between contour and polygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (contour_in_polygon(square, Polygon(inner_square, []))
... is Relation.DISJOINT)
True
>>> contour_in_polygon(square, Polygon(triangle, [])) is Relation.TOUCH
True
>>> (contour_in_polygon(inner_square, Polygon(triangle, []))
... is Relation.CROSS)
True
>>> contour_in_polygon(square, Polygon(square, [])) is Relation.COMPONENT
True
>>> contour_in_polygon(triangle, Polygon(square, [])) is Relation.ENCLOSED
True
>>> (contour_in_polygon(inner_square, Polygon(square, []))
... is Relation.WITHIN)
True

orient.planar.region_in_polygon(region: Contour, polygon: Polygon, *, context: Optional[Context] =
None)→ Relation

Finds relation between region and polygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(region.vertices) + len(polygon.border.vertices) +
sum(len(hole.vertices) for hole in polygon.holes).

Parameters

• region – region to check for.

• polygon – polygon to check in.

• context – geometric context.

Returns
relation between region and polygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls

(continues on next page)

24 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

>>> square = Contour([Point(0, 0), Point(4, 0), Point(4, 4), Point(0, 4)])
>>> neighbour_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (region_in_polygon(inner_square, Polygon(neighbour_square, []))
... is Relation.DISJOINT)
True
>>> (region_in_polygon(square, Polygon(neighbour_square, []))
... is Relation.TOUCH)
True
>>> (region_in_polygon(inner_square, Polygon(triangle, []))
... is Relation.OVERLAP)
True
>>> region_in_polygon(square, Polygon(inner_square, [])) is Relation.COVER
True
>>> region_in_polygon(square, Polygon(triangle, [])) is Relation.ENCLOSES
True
>>> region_in_polygon(square, Polygon(square, [])) is Relation.EQUAL
True
>>> region_in_polygon(triangle, Polygon(square, [])) is Relation.ENCLOSED
True
>>> region_in_polygon(inner_square, Polygon(square, [])) is Relation.WITHIN
True

orient.planar.multiregion_in_polygon(multiregion: Sequence[Contour], polygon: Polygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between multiregion and polygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = sum(len(region.vertices) for region in multiregion) +
len(polygon.border.vertices) + sum(len(hole.vertices) for hole in polygon.holes).

Parameters

• multiregion – multiregion to check for.

• polygon – polygon to check in.

• context – geometric context.

Returns
relation between multiregion and polygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),

(continues on next page)

CONTENTS 25



orient, Release 7.0.1-alpha

(continued from previous page)

... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> outer_square = Contour([Point(0, 0), Point(8, 0), Point(8, 8),
... Point(0, 8)])
>>> (multiregion_in_polygon([first_square, third_square],
... Polygon(second_inner_square, []))
... is Relation.DISJOINT)
True
>>> (multiregion_in_polygon([first_inner_square, second_inner_square],
... Polygon(first_square, [first_inner_square]))
... is Relation.TOUCH)
True
>>> (multiregion_in_polygon([first_inner_square, second_inner_square],
... Polygon(first_square, []))
... is Relation.OVERLAP)
True
>>> (multiregion_in_polygon([first_square, second_inner_square],
... Polygon(first_inner_square, []))
... is Relation.COVER)
True
>>> (multiregion_in_polygon([first_square, second_inner_square],
... Polygon(first_square, [first_inner_square]))
... is Relation.ENCLOSES)
True
>>> (multiregion_in_polygon([first_square, second_inner_square],
... Polygon(first_square, []))
... is Relation.COMPOSITE)
True
>>> (multiregion_in_polygon([first_square, second_inner_square],
... Polygon(outer_square, []))
... is Relation.ENCLOSED)
True
>>> (multiregion_in_polygon([first_inner_square, second_inner_square],
... Polygon(outer_square, []))
... is Relation.WITHIN)
True

orient.planar.polygon_in_polygon(left: Polygon, right: Polygon, *, context: Optional[Context] = None)→
Relation

Finds relation between polygons.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

26 CONTENTS



orient, Release 7.0.1-alpha

where vertices_count = len(left.border.vertices) + sum(len(hole.vertices) for hole
in left.holes) + len(right.border.vertices) + sum(len(hole.vertices) for hole in
right.holes).

Parameters

• left – polygon to check for.

• right – polygon to check in.

• context – geometric context.

Returns
relation between polygons.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> outer_square = Contour([Point(0, 0), Point(7, 0), Point(7, 7),
... Point(0, 7)])
>>> inner_square = Contour([Point(1, 1), Point(6, 1), Point(6, 6),
... Point(1, 6)])
>>> innermore_square = Contour([Point(2, 2), Point(5, 2), Point(5, 5),
... Point(2, 5)])
>>> innermost_square = Contour([Point(3, 3), Point(4, 3), Point(4, 4),
... Point(3, 4)])
>>> (polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(innermore_square, []))
... is polygon_in_polygon(Polygon(innermore_square, []),
... Polygon(outer_square, [inner_square]))
... is polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(innermore_square, [innermost_square]))
... is polygon_in_polygon(Polygon(innermore_square, [innermost_square]),
... Polygon(outer_square, [inner_square]))
... is Relation.DISJOINT)
True
>>> (polygon_in_polygon(Polygon(inner_square, []),
... Polygon(outer_square, [inner_square]))
... is polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(inner_square, []))
... is polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(inner_square, [innermore_square]))
... is polygon_in_polygon(Polygon(inner_square, [innermore_square]),
... Polygon(outer_square, [inner_square]))
... is Relation.TOUCH)
True
>>> (polygon_in_polygon(Polygon(inner_square, []),
... Polygon(outer_square, [innermore_square]))
... is polygon_in_polygon(Polygon(outer_square, [innermore_square]),
... Polygon(inner_square, []))
... is polygon_in_polygon(Polygon(outer_square, [innermore_square]),
... Polygon(inner_square, [innermost_square]))
... is polygon_in_polygon(Polygon(inner_square, [innermost_square]),
... Polygon(outer_square, [innermore_square]))

(continues on next page)

CONTENTS 27



orient, Release 7.0.1-alpha

(continued from previous page)

... is Relation.OVERLAP)
True
>>> (polygon_in_polygon(Polygon(outer_square, []),
... Polygon(inner_square, []))
... is polygon_in_polygon(Polygon(outer_square, [innermost_square]),
... Polygon(inner_square, [innermore_square]))
... is Relation.COVER)
True
>>> (polygon_in_polygon(Polygon(outer_square, []),
... Polygon(outer_square, [inner_square]))
... is polygon_in_polygon(Polygon(outer_square, [innermore_square]),
... Polygon(outer_square, [inner_square]))
... is polygon_in_polygon(Polygon(outer_square, [innermore_square]),
... Polygon(inner_square, [innermore_square]))
... is Relation.ENCLOSES)
True
>>> (polygon_in_polygon(Polygon(outer_square, []),
... Polygon(outer_square, []))
... is polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(outer_square, [inner_square]))
... is Relation.EQUAL)
True
>>> (polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(outer_square, []))
... is polygon_in_polygon(Polygon(outer_square, [inner_square]),
... Polygon(outer_square, [innermore_square]))
... is polygon_in_polygon(Polygon(inner_square, [innermore_square]),
... Polygon(outer_square, [innermore_square]))
... is Relation.ENCLOSED)
True
>>> (polygon_in_polygon(Polygon(inner_square, []),
... Polygon(outer_square, []))
... is polygon_in_polygon(Polygon(inner_square, [innermore_square]),
... Polygon(outer_square, [innermost_square]))
... is Relation.WITHIN)
True

orient.planar.point_in_multipolygon(point: Point, multipolygon: Multipolygon, *, context:
Optional[Context] = None)→ Relation

Finds location of point in multipolygon.

Time complexity:
O(sum(len(polygon.border.vertices) + sum(len(hole.vertices) for hole in polygon.
holes)) for polygon in multipolygon.polygons))

Memory complexity:
O(1)

Parameters

• point – point to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

28 CONTENTS



orient, Release 7.0.1-alpha

Returns
location of point in multipolygon.

>>> from ground.base import Location, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> (point_in_multipolygon(Point(6, 2),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Location.EXTERIOR)
True
>>> (point_in_multipolygon(Point(4, 4),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Location.BOUNDARY)
True
>>> (point_in_multipolygon(Point(2, 2),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Location.INTERIOR)
True

orient.planar.segment_in_multipolygon(segment: Segment, multipolygon: Multipolygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between segment and multipolygon.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = sum(len(polygon.border.vertices) + sum(len(hole.vertices) for
hole in polygon.holes) for polygon in multipolygon.polygons).

Parameters

• segment – segment to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between segment and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls

(continues on next page)

CONTENTS 29



orient, Release 7.0.1-alpha

(continued from previous page)

>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> Segment = context.segment_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> (segment_in_multipolygon(Segment(Point(2, 5), Point(2, 9)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.DISJOINT)
True
>>> (segment_in_multipolygon(Segment(Point(2, 4), Point(2, 8)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.TOUCH)
True
>>> (segment_in_multipolygon(Segment(Point(2, 2), Point(2, 6)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.CROSS)
True
>>> (segment_in_multipolygon(Segment(Point(2, 4), Point(6, 4)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.COMPONENT)
True
>>> (segment_in_multipolygon(Segment(Point(3, 3), Point(5, 5)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.ENCLOSED)
True
>>> (segment_in_multipolygon(Segment(Point(1, 1), Point(3, 3)),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.WITHIN)
True

orient.planar.multisegment_in_multipolygon(multisegment: Multisegment, multipolygon: Multipolygon, *,
context: Optional[Context] = None)→ Relation

Finds relation between multisegment and multipolygon.

Time complexity:
O(segments_count * log segments_count)

Memory complexity:
O(segments_count)

where segments_count = len(multisegment.segments) + multipolygon_segments_count,
multipolygon_segments_count = sum(len(polygon.border.vertices) + sum(len(hole.
vertices) for hole in polygon.holes) for polygon in multipolygon.polygons).

Parameters

• multisegment – multisegment to check for.

30 CONTENTS



orient, Release 7.0.1-alpha

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between multisegment and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Multisegment = context.multisegment_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> Segment = context.segment_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> second_inner_square = Contour([Point(5, 5), Point(7, 5), Point(7, 7),
... Point(5, 7)])
>>> first_square_edges = [Segment(Point(0, 0), Point(4, 0)),
... Segment(Point(0, 0), Point(0, 4)),
... Segment(Point(4, 0), Point(4, 4)),
... Segment(Point(0, 4), Point(4, 4))]
>>> first_inner_square_edges = [Segment(Point(1, 1), Point(3, 1)),
... Segment(Point(1, 3), Point(1, 1)),
... Segment(Point(3, 1), Point(3, 3)),
... Segment(Point(1, 3), Point(3, 3))]
>>> first_square_diagonals = [Segment(Point(0, 0), Point(2, 2)),
... Segment(Point(2, 2), Point(4, 0)),
... Segment(Point(2, 2), Point(4, 4)),
... Segment(Point(0, 4), Point(2, 2))]
>>> (multisegment_in_multipolygon(
... Multisegment(first_square_edges),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.DISJOINT)
True
>>> (multisegment_in_multipolygon(
... Multisegment(first_square_edges + first_inner_square_edges),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.TOUCH)
True
>>> (multisegment_in_multipolygon(
... Multisegment(first_square_diagonals),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.CROSS)
True
>>> (multisegment_in_multipolygon(

(continues on next page)

CONTENTS 31



orient, Release 7.0.1-alpha

(continued from previous page)

... Multisegment(first_square_edges),

... Multipolygon([Polygon(first_square, []),

... Polygon(second_square, [])]))

... is Relation.COMPONENT)
True
>>> (multisegment_in_multipolygon(
... Multisegment(first_inner_square_edges),
... Multipolygon([Polygon(first_square, []),
... Polygon(second_square, [])]))
... is Relation.WITHIN)
True

orient.planar.contour_in_multipolygon(contour: Contour, multipolygon: Multipolygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between contour and multipolygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(contour.vertices) + multipolygon_vertices_count,
multipolygon_vertices_count = sum(len(polygon.border.vertices) + sum(len(hole.
vertices) for hole in polygon.holes) for polygon in multipolygon.polygons).

Parameters

• contour – contour to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between contour and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (contour_in_multipolygon(
... first_square, Multipolygon([Polygon(first_inner_square, []),

(continues on next page)

32 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

... Polygon(second_inner_square, [])]))

... is Relation.DISJOINT)
True
>>> (contour_in_multipolygon(
... second_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.TOUCH)
True
>>> (contour_in_multipolygon(
... first_inner_square, Multipolygon([Polygon(triangle, []),
... Polygon(second_square, [])]))
... is Relation.CROSS)
True
>>> (contour_in_multipolygon(
... first_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.COMPONENT)
True
>>> (contour_in_multipolygon(
... triangle, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.ENCLOSED)
True
>>> (contour_in_multipolygon(
... first_inner_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.WITHIN)
True

orient.planar.region_in_multipolygon(region: Contour, multipolygon: Multipolygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between region and multipolygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = len(region.vertices) + multipolygon_vertices_count,
multipolygon_vertices_count = sum(len(polygon.border.vertices) + sum(len(hole.
vertices) for hole in polygon.holes) for polygon in multipolygon.polygons).

Parameters

• region – region to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between region and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()

(continues on next page)

CONTENTS 33



orient, Release 7.0.1-alpha

(continued from previous page)

>>> Contour = context.contour_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> Multipolygon = context.multipolygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> outer_square = Contour([Point(0, 0), Point(8, 0), Point(8, 8),
... Point(0, 8)])
>>> triangle = Contour([Point(0, 0), Point(4, 0), Point(0, 4)])
>>> (region_in_multipolygon(
... third_square, Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.DISJOINT)
True
>>> (region_in_multipolygon(
... second_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.TOUCH)
True
>>> (region_in_multipolygon(
... first_square, Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.OVERLAP)
True
>>> (region_in_multipolygon(
... outer_square, Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]))
... is Relation.COVER)
True
>>> (region_in_multipolygon(
... outer_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.ENCLOSES)
True
>>> (region_in_multipolygon(
... triangle, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.ENCLOSED)
True
>>> (region_in_multipolygon(
... first_inner_square, Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.WITHIN)
True

34 CONTENTS



orient, Release 7.0.1-alpha

orient.planar.multiregion_in_multipolygon(multiregion: Sequence[Contour], multipolygon:
Multipolygon, *, context: Optional[Context] = None)→
Relation

Finds relation between multiregion and multipolygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = multiregion_vertices_count + multipolygon_vertices_count,
multiregion_vertices_count = sum(len(region.vertices) for region in multiregion),
multipolygon_vertices_count = sum(len(polygon.border.vertices) + sum(len(hole.
vertices) for hole in polygon.holes) for polygon in multipolygon.polygons).

Parameters

• multiregion – multiregion to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between multiregion and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> fourth_square = Contour([Point(0, 4), Point(4, 4), Point(4, 8),
... Point(0, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> third_inner_square = Contour([Point(5, 5), Point(7, 5), Point(7, 7),
... Point(5, 7)])
>>> fourth_inner_square = Contour([Point(1, 5), Point(3, 5), Point(3, 7),
... Point(1, 7)])
>>> (multiregion_in_multipolygon(
... [first_square, third_square],
... Multipolygon([Polygon(second_inner_square, []),
... Polygon(fourth_inner_square, [])]))
... is multiregion_in_multipolygon(
... [first_inner_square, third_inner_square],
... Multipolygon([Polygon(second_square, [second_inner_square]),
... Polygon(fourth_square, [fourth_inner_square])]))

(continues on next page)

CONTENTS 35



orient, Release 7.0.1-alpha

(continued from previous page)

... is Relation.DISJOINT)
True
>>> (multiregion_in_multipolygon(
... [first_square, third_square],
... Multipolygon([Polygon(second_square, []),
... Polygon(fourth_square, [])]))
... is multiregion_in_multipolygon(
... [first_inner_square, third_inner_square],
... Multipolygon([Polygon(first_square, [first_inner_square]),
... Polygon(third_square, [third_inner_square])]))
... is Relation.TOUCH)
True
>>> (multiregion_in_multipolygon(
... [first_square, third_inner_square],
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_square, [])]))
... is Relation.OVERLAP)
True
>>> (multiregion_in_multipolygon(
... [first_square, third_square],
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.COVER)
True
>>> (multiregion_in_multipolygon(
... [first_square, third_inner_square],
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is multiregion_in_multipolygon(
... [first_square, third_square],
... Multipolygon([Polygon(first_square, [first_inner_square]),
... Polygon(third_square, [third_inner_square])]))
... is Relation.ENCLOSES)
True
>>> (multiregion_in_multipolygon(
... [first_inner_square, second_inner_square, third_inner_square],
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.COMPOSITE)
True
>>> (multiregion_in_multipolygon(
... [first_square, third_square],
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.EQUAL)
True
>>> (multiregion_in_multipolygon(
... [first_inner_square, second_inner_square],
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.COMPONENT)

(continues on next page)

36 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

True
>>> (multiregion_in_multipolygon(
... [first_inner_square, third_inner_square],
... Multipolygon([Polygon(first_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.ENCLOSED)
True
>>> (multiregion_in_multipolygon(
... [first_inner_square, third_inner_square],
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.WITHIN)
True

orient.planar.polygon_in_multipolygon(polygon: Polygon, multipolygon: Multipolygon, *, context:
Optional[Context] = None)→ Relation

Finds relation between polygon and multipolygon.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = polygon_vertices_count + multipolygon_vertices_count,
polygon_vertices_count = len(polygon.border.vertices) + sum(len(hole.vertices)
for hole in polygon.holes), multipolygon_vertices_count = sum(len(polygon.border.
vertices) + sum(len(hole.vertices) for hole in polygon.holes) for polygon in
multipolygon.polygons).

Parameters

• polygon – polygon to check for.

• multipolygon – multipolygon to check in.

• context – geometric context.

Returns
relation between polygon and multipolygon.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> outer_square = Contour([Point(0, 0), Point(7, 0), Point(7, 7),
... Point(0, 7)])
>>> inner_square = Contour([Point(1, 1), Point(6, 1), Point(6, 6),
... Point(1, 6)])
>>> innermore_square = Contour([Point(2, 2), Point(5, 2), Point(5, 5),
... Point(2, 5)])
>>> innermost_square = Contour([Point(3, 3), Point(4, 3), Point(4, 4),
... Point(3, 4)])
>>> (polygon_in_multipolygon(Polygon(outer_square, [inner_square]),

(continues on next page)

CONTENTS 37



orient, Release 7.0.1-alpha

(continued from previous page)

... Multipolygon([Polygon(innermore_square, [])]))

... is polygon_in_multipolygon(

... Polygon(innermore_square, []),

... Multipolygon([Polygon(outer_square, [inner_square])]))

... is polygon_in_multipolygon(

... Polygon(outer_square, [inner_square]),

... Multipolygon([Polygon(innermore_square,

... [innermost_square])]))

... is polygon_in_multipolygon(

... Polygon(innermore_square, [innermost_square]),

... Multipolygon([Polygon(outer_square, [inner_square])]))

... is Relation.DISJOINT)
True
>>> (polygon_in_multipolygon(
... Polygon(inner_square, []),
... Multipolygon([Polygon(outer_square, [inner_square])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [inner_square]),
... Multipolygon([Polygon(inner_square, [])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [inner_square]),
... Multipolygon([Polygon(inner_square,
... [innermore_square])]))
... is polygon_in_multipolygon(
... Polygon(inner_square, [innermore_square]),
... Multipolygon([Polygon(outer_square, [inner_square])]))
... is Relation.TOUCH)
True
>>> (polygon_in_multipolygon(
... Polygon(inner_square, []),
... Multipolygon([Polygon(outer_square, [innermore_square])]))
... is polygon_in_multipolygon(Polygon(outer_square, [innermore_square]),
... Multipolygon([Polygon(inner_square, [])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [innermore_square]),
... Multipolygon([Polygon(inner_square,
... [innermost_square])]))
... is polygon_in_multipolygon(
... Polygon(inner_square, [innermost_square]),
... Multipolygon([Polygon(outer_square,
... [innermore_square])]))
... is Relation.OVERLAP)
True
>>> (polygon_in_multipolygon(Polygon(outer_square, []),
... Multipolygon([Polygon(inner_square, [])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [innermost_square]),
... Multipolygon([Polygon(inner_square,
... [innermore_square])]))
... is Relation.COVER)
True
>>> (polygon_in_multipolygon(

(continues on next page)

38 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

... Polygon(outer_square, []),

... Multipolygon([Polygon(outer_square, [inner_square])]))

... is polygon_in_multipolygon(

... Polygon(outer_square, [innermore_square]),

... Multipolygon([Polygon(outer_square, [inner_square])]))

... is polygon_in_multipolygon(

... Polygon(outer_square, [innermore_square]),

... Multipolygon([Polygon(inner_square,

... [innermore_square])]))

... is Relation.ENCLOSES)
True
>>> (polygon_in_multipolygon(Polygon(outer_square, []),
... Multipolygon([Polygon(outer_square, [])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [inner_square]),
... Multipolygon([Polygon(outer_square, [inner_square])]))
... is Relation.EQUAL)
True
>>> (polygon_in_multipolygon(Polygon(innermore_square, []),
... Multipolygon([Polygon(outer_square,
... [inner_square]),
... Polygon(innermore_square, [])]))
... is polygon_in_multipolygon(
... Polygon(innermore_square, [innermost_square]),
... Multipolygon([Polygon(outer_square, [inner_square]),
... Polygon(innermore_square,
... [innermost_square])]))
... is Relation.COMPONENT)
True
>>> (polygon_in_multipolygon(Polygon(outer_square, [inner_square]),
... Multipolygon([Polygon(outer_square, [])]))
... is polygon_in_multipolygon(
... Polygon(outer_square, [inner_square]),
... Multipolygon([Polygon(outer_square,
... [innermore_square])]))
... is polygon_in_multipolygon(
... Polygon(inner_square, [innermore_square]),
... Multipolygon([Polygon(outer_square,
... [innermore_square])]))
... is Relation.ENCLOSED)
True
>>> (polygon_in_multipolygon(Polygon(inner_square, []),
... Multipolygon([Polygon(outer_square, [])]))
... is polygon_in_multipolygon(
... Polygon(inner_square, [innermore_square]),
... Multipolygon([Polygon(outer_square,
... [innermost_square])]))
... is Relation.WITHIN)
True

orient.planar.multipolygon_in_multipolygon(left: Multipolygon, right: Multipolygon, *, context:
Optional[Context] = None)→ Relation

CONTENTS 39



orient, Release 7.0.1-alpha

Finds relation between multipolygons.

Time complexity:
O(vertices_count * log vertices_count)

Memory complexity:
O(vertices_count)

where vertices_count = left_vertices_count + right_vertices_count, left_vertices_count
= sum(len(polygon.border.vertices) + sum(len(hole.vertices) for hole in polygon.
holes) for polygon in left.polygons), right_vertices_count = sum(len(polygon.border.
vertices) + sum(len(hole.vertices) for hole in polygon.holes) for polygon in right.
polygons).

Parameters

• left – multipolygon to check for.

• right – multipolygon to check in.

• context – geometric context.

Returns
relation between multipolygons.

>>> from ground.base import Relation, get_context
>>> context = get_context()
>>> Contour = context.contour_cls
>>> Multipolygon = context.multipolygon_cls
>>> Point = context.point_cls
>>> Polygon = context.polygon_cls
>>> first_square = Contour([Point(0, 0), Point(4, 0), Point(4, 4),
... Point(0, 4)])
>>> second_square = Contour([Point(4, 0), Point(8, 0), Point(8, 4),
... Point(4, 4)])
>>> third_square = Contour([Point(4, 4), Point(8, 4), Point(8, 8),
... Point(4, 8)])
>>> fourth_square = Contour([Point(0, 4), Point(4, 4), Point(4, 8),
... Point(0, 8)])
>>> first_inner_square = Contour([Point(1, 1), Point(3, 1), Point(3, 3),
... Point(1, 3)])
>>> second_inner_square = Contour([Point(5, 1), Point(7, 1), Point(7, 3),
... Point(5, 3)])
>>> third_inner_square = Contour([Point(5, 5), Point(7, 5), Point(7, 7),
... Point(5, 7)])
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(second_square, []),
... Polygon(fourth_square, [])]))
... is Relation.DISJOINT)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]),
... Multipolygon([Polygon(second_square, []),
... Polygon(fourth_square, [])]))

(continues on next page)

40 CONTENTS



orient, Release 7.0.1-alpha

(continued from previous page)

... is multipolygon_in_multipolygon(

... Multipolygon([Polygon(first_inner_square, []),

... Polygon(third_inner_square, [])]),

... Multipolygon([Polygon(first_square, [first_inner_square]),

... Polygon(third_square, [third_inner_square])]))

... is Relation.TOUCH)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_square, [])]))
... is Relation.OVERLAP)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.COVER)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]),
... Multipolygon([Polygon(first_square, [first_inner_square]),
... Polygon(third_square, [third_inner_square])]))
... is Relation.ENCLOSES)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.COMPOSITE)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]),
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.EQUAL)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(second_inner_square, [])]),
... Multipolygon([Polygon(first_inner_square, []),

(continues on next page)

CONTENTS 41



orient, Release 7.0.1-alpha

(continued from previous page)

... Polygon(second_inner_square, []),

... Polygon(third_inner_square, [])]))

... is Relation.COMPONENT)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(first_square, []),
... Polygon(third_inner_square, [])]))
... is Relation.ENCLOSED)
True
>>> (multipolygon_in_multipolygon(
... Multipolygon([Polygon(first_inner_square, []),
... Polygon(third_inner_square, [])]),
... Multipolygon([Polygon(first_square, []),
... Polygon(third_square, [])]))
... is Relation.WITHIN)
True

42 CONTENTS



PYTHON MODULE INDEX

o
orient.planar, 1

43



orient, Release 7.0.1-alpha

44 Python Module Index



INDEX

C
contour_in_contour() (in module orient.planar), 8
contour_in_multipolygon() (in module ori-

ent.planar), 32
contour_in_multiregion() (in module ori-

ent.planar), 16
contour_in_polygon() (in module orient.planar), 23
contour_in_region() (in module orient.planar), 11

M
module

orient.planar, 1
multipolygon_in_multipolygon() (in module ori-

ent.planar), 39
multiregion_in_multipolygon() (in module ori-

ent.planar), 34
multiregion_in_multiregion() (in module ori-

ent.planar), 18
multiregion_in_polygon() (in module ori-

ent.planar), 25
multisegment_in_contour() (in module ori-

ent.planar), 7
multisegment_in_multipolygon() (in module ori-

ent.planar), 30
multisegment_in_multiregion() (in module ori-

ent.planar), 15
multisegment_in_multisegment() (in module ori-

ent.planar), 4
multisegment_in_polygon() (in module ori-

ent.planar), 22
multisegment_in_region() (in module ori-

ent.planar), 10

O
orient.planar
module, 1

P
point_in_contour() (in module orient.planar), 5
point_in_multipolygon() (in module orient.planar),

28

point_in_multiregion() (in module orient.planar),
13

point_in_multisegment() (in module orient.planar),
2

point_in_polygon() (in module orient.planar), 20
point_in_region() (in module orient.planar), 8
point_in_segment() (in module orient.planar), 1
polygon_in_multipolygon() (in module ori-

ent.planar), 37
polygon_in_polygon() (in module orient.planar), 26

R
region_in_multipolygon() (in module ori-

ent.planar), 33
region_in_multiregion() (in module orient.planar),

17
region_in_polygon() (in module orient.planar), 24
region_in_region() (in module orient.planar), 12

S
segment_in_contour() (in module orient.planar), 6
segment_in_multipolygon() (in module ori-

ent.planar), 29
segment_in_multiregion() (in module ori-

ent.planar), 14
segment_in_multisegment() (in module ori-

ent.planar), 3
segment_in_polygon() (in module orient.planar), 21
segment_in_region() (in module orient.planar), 9
segment_in_segment() (in module orient.planar), 1

45


	Python Module Index
	Index

